Appendix A

Available Geotechnical Information

Excerpts from 1976 Woodward-Clyde Consultants Geotechnical Investigation Excerpts from 1980 DMJM As-Built Site Improvement Drawings Excerpts from 2007 Treadwell & Rollo Geotechnical Investigation 2012 Treadwell & Rollo Geotechnical Study

🔶 76-1	1976 BORINGS BY WOODWARD-CLYDE CONSULTANTS FOR PRESENT STUDY (25)
76-T1	1976 TEST TRENCHES BY WOODWARD-CLYDE CONSULTANTS FOR PRESENT STUDY (5)
-o∲- 76−M1	1976 MUDLINE SAMPLES BY WOODWARD-CLYDE CONSULTANTS FOR PRESENT STUDY (10
- 741	1974 BORINGS BY HARLAN ENGINEERS
- 70-1	1970 BORINGS BY GRIBALDO, JONES & ASSOCIATES
-∳ − 62−1	1962 BORINGS BY JOHN A. BLUME & ASSOCIATES, ENGINEERS
74-11	1974 TEST TRENCHES BY HARLAN ENGINEERS
73-11	1973 TEST TRENCHES BY BERLOGAR, LONG & ASSOCIATES

Proj	ect:	OYSTER POINT MARINA		N 70								
Date	Drilled:	June 15, 1976	LUG OT BORING	No. 76-	17	Project:	0y: South	STER POINT MARINA San Francisco, California	Log of Boring	No. 7	76-	18
Туре	of Borin	ngi6" Auger	Remarks :			Date Drill Type of Bo	ed:	June 16, 1976 6" Auger	Manmer Weight:			
й 	a la		P T 1 O M	f ty #	ssive gth.	<u> </u>	1			 **	2	
Dep.	Na Sa				Stren Ps	epth.	1	DESCRI	PTION	lstur tent,	Pers	nfine ressi ength
	TT	CLAYEY SILT FILL: Poorly	Y compacted, dry brown					Surface Elevation: 104		£§	È	Str D
								1" Asphalt Over 8" Rock	Base	7	T	
· ·									Stry compacted	-		
						5		KUBBISH FIL	L			
		RUBBISH FIL	L						(FILL) 🛦			
10 -												
										-		
15					1	15 -						
20												
-						20		SILTY CLAY	(CH)			
								Soft, saturated, dark	gray			
25 _			44									
30						30 -						
		TRubbish mixed with an										
-		addran mixed with so	at clay									
» -			(FILL)			35 _						
40 _												
						40						
45								(B A Y	MUD)			
						45						
50						50						
		SILTY CLAY	(CH)									ļ
)" –	·	Soft, saturated, dark g	ray			55						
					1							
60 -												
]						60						
65						65						
70 -												
						70						
75 -						75						
-					1							Í
80 -						80 -						
85 -								· •				
					1	85 -						
-												
90 -		THEFT										
		with stringers of dark	k brown peat									
		1									1	

t

GEOTECHNICAL INVESTIGATION SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California

San Mateo Harbor County Harbor District South San Francisco, California

> 10 October 2007 Project No. 4177.03

6.2.1 Liquefaction, Lateral Spreading, and Differential Compaction

Saturated, cohesionless soil can liquefy as it experiences a temporary loss of shear strength created by a transient rise in excess pore pressure generated by strong ground motion. We conclude the sand layers present beneath the groundwater at the site are sufficiently dense and/or cohesive so that the potential for liquefaction and lateral spreading is low.

Cyclic densification of non-saturated loose to medium dense sand by earthquake vibrations can cause ground surface settlement (differential compaction). On the basis of a review of the Woodward-Clyde 1976 borings, it appears the sand above the groundwater within the proposed landside development area at the site, where explored, is sufficiently dense and/or cohesive so that the potential for cyclic densification and associated settlement is low.

6.2.2 Ground Rupture

Historically, ground surface ruptures closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act and no known active or potentially active faults exist on the site. Therefore, we conclude the risk of fault offset at the site from a known active fault is low. In a seismically active area, the remote possibility exists for future faulting in areas where no faults previously existed; however, we conclude the risk of surface faulting and consequent secondary ground failure is low.

7.0 DISCUSSION AND CONCLUSIONS

From a geotechnical standpoint, we conclude the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications and implemented during construction. The primary geotechnical issues to be addressed for the project are settlement of the Bay Mud under the weight of existing fill and refuse material adjacent to the site (former Oyster Point landfill) and satisfactory foundation support for the proposed pier structure. Our conclusions regarding these and other issues are discussed in the remainder of this section.

7.1 Settlement

The results of our analyses indicate the Bay Mud is still consolidating under the weight of the existing fill and refuse material, which terminate at the shoreline. These results are consistent with the thickness of

the Bay Mud and the length of time the fill has been in place. Consequently, even if no new fill is added to the site, settlement will continue to occur due to on-going primary consolidation and secondary compression (strain-related movements) of the Bay Mud. Where new fill is placed, a new cycle of primary consolidation will begin and additional settlement will occur. However, we understand only minor onshore fills in the vicinity of the ramp will be placed; the settlement associated with this additional fill is expected to be minor relative to the remaining settlement. Our estimates of the predicted future settlement versus time along the shoreline at the site over the next 50 years are shown on Figure 6. Differential settlement between the pile-supported pier should be hinged to accommodate the anticipated differential settlement between the pile new fill and shoreline. We understand asphalt or gravel pathways will extend perpendicularly from the ramp. Regular maintenance, such as the addition of fill or asphalt overlays should be anticipated for the pathways as the hinged slab rotates to reduce differential settlement between the ramp.

Although there is no fill directly over the Bay Mud within the proposed pier structure area, we anticipate settlement of the Bay Mud will occur near the shoreline due to the influence of the fill loads at the shoreline. We conclude the Bay Mud within approximately 50 feet of the shoreline is undergoing consolidation settlement due to the influence of the fill. Because of the anticipated settlement of the Bay Mud, we conclude that piles placed within 50 feet of the shoreline will experience downdrag loads. Downdrag is the additional load transferred to the piles when the Bay Mud surrounding the pile is consolidating. The downward movement of the compressible soil layer and the soil above it with respect to the pile imposes negative frictional stresses on the pile. These loads are discussed in Section 7.2.

7.2 Foundations

We anticipate excessive settlement would occur in the Bay Mud beneath the new pier loads if supported on a shallow foundation system. Therefore, we conclude a deep foundation system, consisting of driven piles primarily gaining support in the sand below the Bay Mud, is the most appropriate method for support of the pier. On the basis of discussions with Moffatt & Nichol, the project structural engineer, we understand two different sized steel pipe piles will be used to provide vertical and lateral support for the pier structure: 1) 36-inch-diameter pile with 3/4-inch-thick wall and 2) 42-inch-diameter with 1-inch-thick wall. We judge piles will gain support through a combination of friction between the soil and the pile shaft and end-bearing in the sand layer below the Bay Mud.

10 October 2007

As discussed in Section 7.1, the fill and refuse from the Oyster Point landfill are consolidating the Bay Mud and causing ground surface settlement. The estimated settlement decreases with distance from the landfill. Piles located within 50 feet of the shoreline should be designed to support downdrag loads, in addition to the structural loads.

The settlement of properly installed driven piles, designed based on the recommendations presented herein, should be less than 1/2 inch. Differential settlement between adjacent pile caps should be less than 1/4 inch.

As discussed in Section 7.1, a hinged slab may be used to connect the pier to the shoreline; the hinged slab may be supported on a continuous footing bearing on the existing fill. The hinged slab should be designed to rotate and settle with the ground. The estimated settlement over the next 50 years along the shoreline is shown on Figure 6. The footing should be located outside the landfill, the approximate limits of which are shown on Figure 2. The landfill is covered with a clay cap; the bottom of the footing should not be located within 12 inches of the surface of the clay cap to prevent the excavation from disturbing the clay cap.

8.0 RECOMMENDATIONS

Our recommendations regarding foundation design, site preparation and grading, flexible pavement design, seismic design, and other geotechnical aspects of this project are presented in this section.

8.1 Foundations

The pier structure may be supported on 36-inch and 42-inch-diameter steel pipe piles with 3/4-inch and 1-inch-thick walls, respectively. Axial and lateral capacities for piles, as well as construction considerations are presented in Sections 8.1.1 through 8.1.3. Recommendations for footings are presented in Section 8.1.4.

8.1.1 Axial Load Resistance

The piles should gain support from friction between the sides of the pile and the soil and end-bearing in the sand below the Bay Mud. Piles should be driven a minimum of 10 feet into the sand below the Bay

Mud. The depth to the sand layer varies across the pier footprint; we estimate pile lengths will be on the order of about 100 to 105 feet (as measured from the mudline).

Recommended net allowable dead plus live load pile capacities for steel pipe pile driven a minimum of 10 feet into the sand below the Bay Mud are presented in Table 4. As discussed in Section 7.1, piles within 50 feet of the shoreline may be subjected to downdrag forces. We understand several of the 36-inch-diameter piles will be within this zone. We estimate the downdrag load on the 36-inch-diameter piles will be approximately 145 kips.

Pile Diameter/ Wall Thickness (inches, inches)	Downdrag Load ¹ (kips)	NET Q _{allowable} ^{2,3} Dead plus Live (kips)
36/0.75	No Downdrag (beyond 50 feet from shoreline)	550
42/1.0	No Downdrag (beyond 50 feet from shoreline)	690
36/0.75	145	345

TABLE 4Recommended Single Pile CapacitySteel Pipe Piles(10 feet embedment into sand below Bay Mud)

1 Downdrag load applies to piles located within 50 feet of the shoreline.

2 Net Qallowable includes downdrag load.

3 Loads on pile should not exceed ultimate structural capacity of pile. Check by multiplying load on pile by appropriate load factor and adding downdrag load.

For short term compressive axial loading conditions such as wind or seismic, the capacities shown on Table 3 may be increased by 1/3. The seismic uplift capacity should be considered to be equal to the allowable compressive axial capacity. To avoid capacity reduction due to group effects, piles should be spaced no closer than four pile widths, center to center.

8.1.2 Lateral Load Resistance

The piles should develop lateral resistance from the passive pressure acting on the upper portion of the piles and their structural rigidity. The allowable lateral capacity of the piles depends on:

- the pile stiffness
- the strength of the surrounding soil
- axial load on the pile
- the allowable deflection at the pile top and the ground surface
- the allowable moment capacity of the pile.

We developed deflection and moment profiles based on 0.5 and 1 inch of lateral deflection for both fixedand free-head conditions for 36-inch- and 42-inch-diameter steel pipe piles. These curves are presented on Figures 7 through 10. These lateral capacities are for single piles only and assume the piles are coated to reduce corrosion potential in the upper 25 to 30 feet. If piles are placed within a spacing of six pile diameters, group reduction factors may apply and we should be consulted to provide the appropriate reduction factors. The moment profile for a single pile with an unfactored load should be used to check the design of individual piles in a group.

8.1.3 Pile Installation

Selection of driving equipment for this project should take into account the "matching" of the pile hammer with the pile size and length. The piles have large cross-sections, and special consideration should be given to selecting a hammer that can deliver enough energy to the tip of the piles to drive them efficiently without damaging them. If the pile cannot be driven to the desired tip elevation, pile jetting may be performed; however, jetting should only be allowed when approved by the geotechnical engineer. Alternatively, a vibratory hammer may be used to install the piles. The diesel or vibratory hammer specifications and proposed installation procedures should be submitted to both the structural and geotechnical engineer for review.

8.1.4 Footings

The hinged slab may be supported on a shallow continuous footing bottomed in fill. The footing may be designed for an allowable bearing pressure of 2,000 psf for dead plus live loads. The allowable bearing

12

pressure may be increased by one-third for total loads, including wind or seismic forces. These values include factors of safety of at least 2.0 and 1.5 for dead plus live loads and total loads, respectively. Footings should be at least 18 inches wide and bottomed at least 18 inches below the lowest adjacent soil subgrade.

Lateral loads can be resisted by a combination of passive pressure acting on the vertical faces of the footings and friction along the base of the footings. Passive resistance may be calculated using an equivalent fluid weight of 250 pounds per cubic foot (pcf). The upper one foot of soil should be ignored unless it is confined by a slab or pavement. Frictional resistance should be computed using a base friction coefficient of 0.3. The passive resistance and base friction coefficient values include a factor of safety of at least 1.5.

8.2 Site Grading and Fill Placement

Prior to grading operations, any existing asphalt pavement, concrete slabs, and other improvements should be demolished and removed from areas to receive improvements. If acceptable from an environmental standpoint, existing asphalt pavement and concrete may be ground up and used in the fill. The asphalt and concrete should be broken into fragments smaller than three inches in least dimension and mixed with sufficient fine-grained material to reduce the size of voids. Where vegetation exists in areas to receive improvements, the upper few inches of soil containing roots and organic matter should be stripped. The stripped material can be stockpiled for future use in landscaping, if approved by the project architect.

The surface exposed by stripping and /or excavation should be:

- scarified to a minimum depth of six inches
- moisture conditioned to near optimum
- compacted to at least 90 percent relative compaction⁹

⁹ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the ASTM D1557 laboratory compaction procedure.

APPENDIX A

.

Boring Logs and Classification Chart

	PROJECT: SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California Log of Boring B-2 PAGE 1 OF 5													
L	Borir	ng loc	ation	: :	See S	ite Plan, Figure 2			Logg	ed by:	A. S	cavullo)	
	Date	start	ed:		3/12/0	D7 Date finished: 3/13/07								
	Drilli	ng me	ethod		Rotar	y Wash								
	ham	mer v	Neign	nvara	p: 1	40 lbs./30 inches Hammer type: Automatic Ha	ammer			LABOF	RATOR	Y TESI	DATA	
-	Sam	SA	MPI	FS		letration Test (SFT), Shelby Tube (ST)			-	Bot	1 I		.*	<u>À</u>
DEPTH	(feet)	Type	Sample	SPT -Value ¹	ЭОТОНШ	MATERIAL DESCRIPTION			Type of Strength Test	Confinin Pressure Lbs/Sq F	Shear Strer Lbs/Sq F	Fines %	Natural Moisture Content,	Dry Densi Lbs/Cu F
	1	0		Z		CLAY (CH) dark gray, very soft, wet, with shell fragments								
	2													
	3-							-						
	4-	ST	10.00	0 psi					TxUU	120	70		70.1	58
	5-													
	6-							-						
	7-							-		<u>e</u>				
	8—		1681					-						
	9-	OT		25				_	T 54114	200	120		00.4	50
1	10-	51		psi					IXUU	300	120		66.4	59
	"_													
1	2-													
1	3-							-						
1	14-	ST		25 psi	1		9	3 -	TxUU	490	210		67.6	60
1	5-			Pul	СН		ΜX	-				÷	*	
1	6-						BA	5						÷
1	7-							-						
1	8-		E.C.			grades son	л.	-						
1	<u>.</u>			40		2			_					
		ST		psi		<i>R</i>			TxUU	680	300		61.6	63
2	7												e -	
2	¹							1-						
2	22-		*											
2	23-							-						
2	24	sт		<25				-	TxUU	860	430	1	64.8	61
2	25-			hai				-						
2	26-													
2	7-							_						
2		3						_						
2														
2	29- ST 55 55 55													
3	.0				LI	· · ·				Frea	dw		Rolla)
									Project	No.:		Figure:		-
5										417	7.03			A-2a

			0.1.1			· · · · · · · · · · · · · · · · · · ·						
N	lajor D	Ivisions	Symbols			Typical Names						
. 20		Gravels	GW	Well-grade	d gravels o	r gravel-sand mixtures, little or no fines						
solis	(More	e than half of	GP	Poorly-grad	ded gravels	or gravel-sand mixtures, little or no fines						
soil	no. 4	se tracuon > 4 sieve size)	GM	Silty grave	s, gravel-sa	and-silt mixtures						
f of : /e si		·	GC	Clayey gra	vels, grave	l-sand-clay mixtures						
se-G siev		Sands	SW	Well-grade	d sands or	gravelly sands, little or no fines						
oars thar	(More	than half of	SP	Poorly-grad	-ooriy-graded sands or gravelly sands, little or no fines							
O O	no. 4	se nacuon < I sieve size)	SM	Silty sands	, sand-silt r	nixtures						
L)			SC	Clayey san	Clayey sands, sand-clay mixtures							
ilis soil ze)	Silts	and Clavs	ML	Inorganic s	ilts and clay	yey silts of low plasticity, sandy silts, gravelly silts						
d So If of 'e si	L	L = < 50	CL	Inorganic c	lays of low	to medium plasticity, gravelly clays, sandy clays, lean clays						
inec hal siev	6		OL	Organic sil	Drganic silts and organic silt-clays of low plasticity							
Cra that 200	Cilte	and Clave	МН	Inorganic s	ilts of high	plasticity						
ine. no.	L	L = > 50	СН	Inorganic c	lays of high	plasticity, fat clays						
цĘv			ОН	Organic sil	ts and clays	s of high plasticity						
High	y Orga	nic Solls	PT	Peat and o	ther highly	organic soils						
		ал. 			-	SAMPLE DESIGNATIONS/SYMBOLS						
		GRAIN SIZE	CHART			Sample taken with Spraque & Henwood split-barrel sampler with						
		Range	of Grain Si	tes		a 3.0-inch outside diameter and a 2.43-inch inside diameter.						
Classific	ation	U.S. Standa Sleve Siz	ard G	rain Size Illimeters		Darkened area indicates soil recovered						
Boulder	s	Above 12	e" A	ove 305		Classification sample taken with Standard Penetration Test sampler						
Cobbles	1	12" to 3"	30	5 to 76.2		I indicate where I are success with their successful to be						
Gravel		3" to No.	4 76	.2 to 4.76								
coarse fine		3" to 3/4" 3/4" to No.	4 19	0.1 to 4.76		Disturbed sample						
Sand No. 4 to No. 200 4.76 to 0.074						Distribut sample						
coarse mediur	n	No. 4 to No. No. 10 to No.	10 4. 40 2.0	76 to 2.00 10 to 0.420	۲	Sampling attempted with no recovery						
fine		No. 40 to No.	200 0.4	20 to 0.074								
Silt and	Clay	Below No. 2	200 Be	low 0.074	! 	Core sample						

SAMPLER TYPE

PT

S&H

SPT

ST

94<u>1</u>

C Core barrel

V

CA California split-barrel sampler with 2.5-inch outside diameter and a 1.93-inch inside diameter

Stabilized groundwater level

- D&M Dames & Moore piston sampler using 2.5-inch outside diameter, thin-walled tube
- O Osterberg piston sampler using 3.0-inch outside diameter, thin-walled Shelby tube

SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California

CLASSIFICATION CHART

Pitcher tube sampler using 3.0-Inch outside diameter,

Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter

Standard Penetration Test (SPT) split-barrel sampler with

a 2.0-Inch outside diameter and a 1.5-inch inside diameter

Shelby Tube (3.0-inch outside diameter, thin-walled tube)

Date 03/28/07 Project No. 4177.03

Sample taken with Direct Push sampler

thin-walled Shelby tube

advanced with hydraulic pressure

Figure A-3

APPENDIX C

Boring Logs by Others

24 July 2012 Project 731556802

Mr. Christopher Devick Moffatt & Nichol 2185 N. California Boulevard, Suite 500 Walnut Creek, California 94596

Subject: Geotechnical Studies Oyster Point Marina Docks 8 and 11 Modifications South San Francisco, California

Dear Mr. Devick:

Treadwell & Rollo is pleased to present the results of our geotechnical studies for the proposed modifications to the existing Docks 8 and 11 at the Oyster Point Marina in South San Francisco, California. Our services were performed in general accordance with our proposal, dated 6 June 2012. We previously performed a geotechnical investigation for the recently opened South San Francisco Ferry Terminal; the results of that investigation are presented in our report dated 10 October 2007 (Revised 8 August 2008).

The site is east of U.S. Highway 101 (Bayshore Freeway) at the east half of Oyster Point Marina, as shown on Figure 1. The approximate location of Docks 8 and 11 are shown on Figure 2. We understand the modifications that are being made to Dock 8 (Guest Dock) do not require new piles; the existing piles are 12-inch square prestressed concrete piles. New 16-inch square prestressed concrete piles will be installed for the Dock 11 modifications. On the basis of information provided to us by Moffatt & Nichol, we understand the highest predicted tide will be at Elevation 9 feet¹ and the mudline in the vicinity of Docks 8 and 11 varies from Elevation -5 to -8 feet.

SCOPE OF SERVICES

The purpose of our studies was to evaluate subsurface conditions using available subsurface data from the site vicinity and develop geotechnical design criteria for the piles at Docks 8 and 11. No new subsurface investigation was performed for this phase of work.

We used the results of the previous subsurface exploration to develop conclusions and recommendations regarding:

- lateral deformation characteristics for new 16-inch square prestressed concrete piles for a free-head condition for Dock 11
- lateral deformation characteristics for the existing 12-inch square prestressed concrete piles for a free-head condition for Dock 8
- construction considerations.

¹ All elevations are referenced to Mean Lower Low Water (MLLW) Datum.

Mr. Christopher Devick Moffatt & Nichol 24 July 2012 Page 2

SUBSURFACE CONDITIONS

We used the results of our previous subsurface investigation at Oyster Point Marina in our current studies. The locations of the borings performed for that investigation are shown on Figure 2. Corresponding boring logs are presented in Appendix A.

The mudline varied from about Elevation -6 to -8 feet in the vicinity of Docks 8 and 11 at the time of our investigation. The results of our field investigation indicate the site is underlain by 88 to 98 feet of very soft to medium stiff compressible clay, locally referred to as Bay Mud. A medium dense to dense sand layer with varying amounts of fines and gravel was encountered below the underconsolidated² Bay Mud and extends to depths of about 115 to 118 feet below the mudline, corresponding to Elevations -122 to -125, respectively. Stiff clay (referred to as Old Bay Clay) was encountered below the sand layers. The thickness of this layer is about 17 to 18 feet. The Old Bay Clay is moderately compressible, but is overconsolidated. Beneath the Old Bay Clay are layers of very stiff sandy clay and very dense clayey sand that extend to the maximum depths explored of 148.5 and 171.5 feet in the two borings performed for the Ferry Terminal.

CONCLUSIONS AND RECOMMENDATIONS

We conclude Docks 8 and 11 may be supported by the existing 12-inch and new 16-inch square prestressed precast concrete piles, respectively, provided the anticipated pile deflection, induced moment, and shear are acceptable for the given loading conditions. Conclusions and recommendations regarding the lateral deformation characteristics and bending moments for piles and construction considerations are presented in the remainder of this section.

Lateral Load Resistance

The piles should develop lateral resistance from the soil passive pressure acting on the upper portion of the piles and their structural rigidity. The allowable lateral capacity of the piles depends on:

- the pile stiffness and fixity
- amount of free stand
- the strength of the surrounding soil
- axial load on the pile
- the allowable deflection at the pile top and the ground surface
- the allowable moment capacity of the pile.

We developed deflection, moment, and shear diagrams for the two pile types for a free-head condition. The analyses were performed using the highest predicted tide level provided by Moffatt & Nichol (Elevation 9 feet), as the point of lateral load application. We used the lowest mudline elevation

² An underconsolidated clay has not yet achieved equilibrium under the existing load; a normally consolidated clay has completed consolidation under the existing load; and an overconsolidated clay has experienced a load greater than it is currently under.

Mr. Christopher Devick Moffatt & Nichol 24 July 2012 Page 3

(Elevation -8 feet) for our analyses, corresponding to approximately 17 feet of unsupported pile length (free stand). Moffatt & Nichol provided the estimated lateral loads and moments at the tops of the piles (at the high water line) for each dock. In our analyses, we used a lateral load of 3.6 kips and a moment of 90 kip-feet at Dock 8 and, a lateral load of 3.2 kips and a moment of 86.4 kip-feet at Dock 11. There were no additional axial loads applied except the self-weight of the pile. For our analyses, we used the software "LPile Plus 5.0.39 for Networks" by Ensoft and the input parameters presented in Table 1. The program linearly interpolates the input parameters from the top to the bottom of the layer.

Soil Type	Elevation (feet, MLLW)	Effective Unit Weight (pounds per cubic foot, pcf)	Undrained Cohesion, c (pounds per square foot, psf)	Strain Factor (ε₅₀)
Bay Mud (top)	-8	38	70	0.02
Bay Mud (bottom)	-98	38	1040	0.01

TABLE 1 LPile Input Parameters

The results or our analyses for the 12-inch piles in terms of deflection, moment and shear are presented on Figures 3 through 5; similar plots are presented on Figures 6 through 8 for new 16-inch square concrete piles. The lateral capacities presented on these figures are for single piles only. If piles are placed within a spacing of six pile diameters, group reduction factors may apply and we should be consulted to provide the appropriate reduction factors. The moment profile for a single pile with an unfactored load should be used to check the design of individual piles in a group.

For the piles to achieve fixity, new piles should be embedded a minimum of 35 feet below the existing mud line for the 16-inch square precast prestressed concrete pile, corresponding to a tip elevation of approximately -43 feet.

Construction Considerations

If interbedded sand layers are encountered, it may be necessary to drive the piles. Selection of driving equipment for this project should take into account the "matching" of the pile hammer with the pile size, length, and potential for tension waves. The hammer specifications and proposed installation procedures should be submitted to both the structural and geotechnical engineer for review.

Because the piles will be embedded in Bay Mud, they may slide into the ground under their self-weight or under the combination of self-weight plus the weight of the hammer. If this is the case, the contractor should be prepared to "catch" the pile to stop it at the desired cutoff elevation. The pile should be held in place until the soil regains strength and can hold the pile; this may take several hours.

Mr. Christopher Devick Moffatt & Nichol 24 July 2012 Page 4

We trust the foregoing is sufficient for your needs. If you have any questions, please call.

Sincerely yours, TREADWELL & ROLLO

Cary E. Ronan, G.E. Senior Project Manager

731556802.01_CER_OP Breakwater Docks 8 and 11

John Gouchon, G.E. Senior Associate

Attachments: Figure 1 – Site Location Map Figure 2 – Site Plan Figures 3 through 8 – Deflection, Moment, and Shear Diagrams for12-inch and 16-inch square prestressed concrete piles Appendix A – Boring Logs from Previous Investigation

FIGURES

APPENDIX A

Boring Logs from Previous Investigation

PRC	JEC	T:		SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California						of Boring B-1 PAGE 1 OF 6							
Borin	g loca	ation:	S	See Si	te Pla	an, Figure 2			Logge	ed by:	J. Nico	oletto					
Date	starte	ed:	3	/3/07		Date finished: 3/3/07			_								
Drillin	ıg me	thod:	R	Rotary	Was	sh											
Ham	mer w	/eight	/drop	: 14	0 lbs	/30 inches Hammer type: Automatic Hamm	ner		LABORATORY TEST DATA								
Samp	oler:	Spra	gue &	Henwo	od (S	&H), Standard Penetration Test (SPT), Shelby Tube (ST)					ŧ			Γ			
-		SAM	PLES	5	ΩGΥ	MATERIAL DESCRIPTION			be of ength est	fining ssure Sq Ft	Strenç Sq Ft	nes %	tural sture ent, %				
DEPTH (feet)	Sample Type	Sample	Blows/ 6	SPT N-Value	ПТНОГ	Ground Surface Elevation: -6.6/ -7.5 foo	t ¹		Str	Con Pre Lbs	Shear Lbs	Ē	Ma Moi Cont				
1 —						CLAY (CH) dark gray, very soft, wet, with shell fragmen [BAY MUD]	nts	▲ -									
2 —								-									
3 —								_									
4 —								_									
5 —																	
c																	
o —																	
7 —	ST			<25 psi				-	TxUU	220	160		71.0				
8 —]					-									
9 —								-									
10 —								-									
11 —								-									
12 —	ST			<25				-	ТуППТ	400	190		72 5				
13 —	0.			psi				_	1,00	-00	100		12.0				
14 —						grades son	-	_									
15 —					СН		UNN .	_									
16 —							ВАҮ	_									
10				-05													
17 —	ST		1	psi					TxUU	600	310		70.8				
18 —			ļ					-	1								
19 —								-									
20 —								-									
21 —			1					-									
22 —	ST		1	<25 psi				-	TxUU	790	310		69.5				
23 —			1					-									
24 —								-									
25 —								-									
26 —								-									
27 —	ст		1	<25				_	TVIIII	000	250		00.0				
28 —	51		1	psi				_	1200	900	250		00.8				
29 —		-	4					_									
30 —								↓			•						
										eac	ÍW		KO N COMP	 74			
									Project	No.:	77 00	Figure:					
										41	11.03			/			

PROJECT	Г:		SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California						of Boring B-1 PAGE 2 OF 6									
5	Samf	PLES	; 	-					LABO	RATOR	Y TEST	DATA						
DEPTH (feet) Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОСУ	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft					
			-		CLAY (CH) (continued)		A											
31 — 32 — _{ST} 33 — 34 —			<25 psi				 	TxUU	1,170	420		80.1	53					
35 — 36 — 37 — _{ST} 38 —	0		<25 psi		No recovery		 											
39 — 40 — 41 — 42 — _{ST}			<25		grades medium stiff		 	TxUU	1 540	550		59.4	65					
43 — 44 — 45 — 46 —			psi	сн		BAY MUD	-											
47 — 48 — 49 —								-										
50 — 51 — 52 — _{ST} 53 —			<25 psi															
54 — 55 — 56 —								-										
57 — 58 — 59 — 60 —							 -											
								Tr	eac			RO						
								Project	No.: 41	77.03	Figure:		A-11					

PROJECT:	SOUTH	of Bo	f Boring B-1 PAGE 3 OF 6								
SAMPI	LES				LABO	RATOR	Y TEST	DATA			
DEPTH (feet) Sampler Type Sample	Blows/ 6" SPT N-Value ¹ LITHOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft		
		CLAY (CH) (continued)	•								
61 — 62 — _{ST}	<25 psi			TxUU	2,290	700		56.1	67		
63 — 64 —				_							
65 —				_							
66 —											
68 —											
69 —				_							
70 —				_							
71 - 72 - _{ST}	<25			_							
73 -	psi			_							
74 —			DM	_							
75 — 76 —			BAY I								
77 —				_							
78 —				_							
79 — 80 —											
81 —				_							
82 —				_							
⁸³ — _{ST} 84 — —	<25 psi			_							
85 —				_							
86 —				_							
87											
89 —				_							
90		I		Tr	eac	iwe		Ro	lo		
						A	LANEA	N EOMP	<u>ANY</u>		

SAMPLES Image: Sample Samp	og of Bo	f Boring B-1 PAGE 6 OF 6							
Hugge Base		LABOR	RATOR	Y TEST	DATA				
51	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft			
63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75 - 76 - 77 - 78 - 79 - 79 - 79 - 79 - 70 - 77 - 78 - 79 - 79 - 70 - 79 - 70 - 70 - 71 - 72 - 73 - 74 - 75 - 79 - 79 - 70 - 79 - 70 - 79 - 70 - 70 - 71 - 72 - 73 - 79 - 79 - 70 - 79 - 70 - 79 - 70 - 70 - 71 - 72 - 73 - 79 - 79 - 79 - 70 - 79 - 79 - 70 - 79 - 79 - 70 - 79 - 70 - 79 - 79 - 70 - 79 - 79 - 79 - 70 - 79 - 70 - 79 - 70 - 79 - 70 - 79 - 70 - 79 - 70 -		7,400 7	7,700	28.2	16.6	115			
79 —		8,340 3	3,340		22.6	105			
80 Boring was terminated at a depth of 171.5 feet.	s using T r	ead	we	<u> </u>	Ro	llo			
Boring backtilled with cement grout. ² Elevation based on field measurements and published tide tables for Oyster Point Marina and survey data plus estimated silt accumulation	ished tide lus Project	No.:		Figure:					

PROJE	CT:		SO	UTH S	SAN FRANCIS OYSTER PO outh San Fran	SCO FERRY TER DINT MARINA Incisco, California		Log	j O	of Bo	orin	д В . Р/	-2 AGE 1	OF 5		
Boring loo	cation:	S	See Si	te Pl	an, Figure 2					Logge	ed by:	A. Sca	vullo			
Date star	ted:	3	8/12/0	7	C	Date finished: 3/	13/07									
Drilling m	ethod:	F	Rotary	Wa	sh	1										
Hammer	weight	t/drop): 14	0 lbs	./30 inches	Hammer type:	Automatic Hamr	mer			LABORATORY TEST DATA					
Sampler:	Star	ndard	l Pene	etratio	on Test (SPT),	Shelby Tube (ST)					£				
	SAM	PLES	S	G√			SCRIPTION			e of st	ning sure Sq Ft	trengt Sq Ft	e s	ural ture nt, %	ensity	
(feet)	Sample	3lows/ 6	SPT N-Value	ТНОГО	Ground	Surface Elevatio	on: -6.8/ -6.5 foo	ot ¹		Typ Stre	Conf Pres Lbs/(Shear S Lbs/9	Fin	Nat Mois Conte	Dry	
					CLAY (C	CH)	with shell fragmer	nts	•							
1 –					dunt gru	y, very son, wer,		10								
2 —									-	1						
3 —									-	-						
4 — _{ST}	.		0						_		120	70		70.1	5	
5			psi						_	1,00	120	10		10.1		
		4														
6 —									-							
7 —									-	-						
8 —									_	_						
9			25						_						_	
10			psi								300	120		66.4	5	
10 -]						
11 —									-	-						
12 —									-	-						
13 —									-	-						
14 —			25						_							
ST			psi					d nw		TxUU	490	210		67.6	60	
15 —				Сн				ЗАY	-							
16 —								_	-	-						
17 —					arades s	oft			-	-						
18 —					gradoo e				_	_						
10			10													
ST			psi							TxUU	680	300		61.6	63	
20 —									-							
21 —									-	-						
22 —									-	-						
23 —									_	4						
24			-25						_							
24 ST			>25 psi							TxUU	860	430		64.8	6	
25 —									-	1						
26 —									-	-						
27 —									-	-						
28 —									_	-						
20 57			200								1 050	120		77 0		
30			psi						↓ _	1,00	1,000	430		11.0		
										 Tr	eac	JW		Ro		
										Project	No.:	A	Figure:	i cump		
											41	77.03			A-2	

PRC	JEC	T:	: SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California							oring	g B. ₽/	- 2 AGE 2	OF 5	
		SAMI	PLES	;	-					LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОСУ	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	ST					CLAY (CH) (continued)								
31 — 32 — 33 —				-25										
34 — 35 — 36 — 37 —	ST			psi					TxUU	1,430	420		76.1	55
39 — 40 — 41 — 42 —	ST			<25 psi					TxUU	1,630	440		61.2	64
43 — 44 — 45 — 46 — 47 — 48 —					СН	grades mediums stiff	BAY MUD							
49 — 50 — 51 — 52 — 53 — 54 — 55 —	ST			<25 psi					TxUU	1,180	670		58.7	65
56 — 57 — 58 — 59 —	ST			<25 psi										
<u> </u>									Tr	eac	İW Ç		Ro	
								-	Project	No.: 417	77.03	Figure:		A-2b

PRC	SOUTH SAN FRANCISCO FERRY TERMINAL LOG C OYSTER POINT MARINA South San Francisco, California								F Boring B-2 PAGE 3 OF 5						
		SAMF	PLES						LABORATORY TEST DATA						
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft	
	ST			<25 psi		CLAY (CH) (continued)									
61 —				poi											
63 —								_							
64 —	-							_							
65 —								-							
66 —								-							
67 —								-							
68 —															
70 —	ет			25				_	тунн	2 500	800		56 1	67	
71 —	51			psi				-	1200	2,590	000		50.1	07	
72 —			Ī					-							
73 —								-							
74 —					СЦ		DIM								
75 — 76 —							ВАҮ								
77 —	-							_							
78 —								-							
79 —								-							
80 —	ST			25 psi				-	TxUU	2,970	870		52.5	69	
81 — 82 —															
83 —								_							
84 —								-							
85 —								-							
86 —								-							
87 —								-							
89 -															
90 —								•			•				
									Tr	eac					
							Project No.: Figure: A·								

PROJECT:				SOUTH SAN FRANCISCO FERRY TERMINAL OYSTER POINT MARINA South San Francisco, California					PAGE 5 OF 5						
		SAMF	PLES	;	-				LABO	RATOR	Y TEST	DATA			
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density		
	SPT			13		CLAY (CH) (continued)	•								
121 —								_							
122 —								_							
123 —								_							
124 —								_							
125 —							CLAY	_							
126 —					СН		BAY (_							
127 —							OLD								
128 —															
129 -															
131 —															
132 —								_							
133 —						SANDY CLAY (CL)		_							
134 —						Consolidation Test, see Figure B-1	[_							
135 —	ST			250 psi					6,060	3,720	53.9	17.3	113		
136 —								_							
137 —								_							
138 —					CL			_							
139 —								_							
140 —								_							
141 —								_							
142 —															
143 —															
144 -						CLAYEY SAND(SC) brown, very dense, wet, with gravel									
146 —															
147 —	6-			600	SC						40.0	40.0			
148 —	51			psi					6,970	5,260	13.8	18.8	11(
149 —			1					_							
150 —						¹ S&H and SPT blow counts verted to SPT.N v	alues using								
Borin Borin	g was te g backfi	erminat lled wit	ed at a h cem	a depth ent gro	of 148. ut.	5 feet. ² Elevation based on field measurements and	published tid	。│ T I	'eac	İW Ç		KO			
boring was performed of				water	tables for Uyster Foint Marina and survey data plus estimated silt accumulation				Project No.: A LANGAN CO Figure:						